

 Navigation

 	
 index

 	
 next |

 	AstroLib.jl 0.0.5 documentation

AstroLib.jl

AstroLib.jl [https://github.com/giordano/AstroLib.jl] is a
package of small generic routines useful above all in astronomical and
astrophysical context, written in Julia [http://julialang.org/].

Included are also translations of some IDL Astronomy User’s
Library [http://idlastro.gsfc.nasa.gov/homepage.html] procedures,
which are released under terms of BSD-2-Clause
License [http://idlastro.gsfc.nasa.gov/idlfaq.html#A14].
AstroLib.jl‘s functions are not drop-in replacement of those
procedures, Julia standard data types are often used (e.g., DateTime
type instead of generic string for dates) and the syntax may slightly
differ.

An extensive error testing suite ensures old fixed bugs will not be brought back
by future changes.

Installation

AstroLib.jl is available for Julia 0.4 and later versions, and can
be installed with Julia built-in package
manager [http://docs.julialang.org/en/stable/manual/packages/]. In a
Julia session run the command

julia> Pkg.add("AstroLib")

You may need to update your package list with Pkg.update() in order
to get the latest version of AstroLib.jl.

Usage

After installing the package, you can start using AstroLib.jl with

using AstroLib

Development

AstroLib.jl is developed on GitHub at
https://github.com/giordano/AstroLib.jl. You can contribute by providing
new functions, reporting bugs, and improving documentation.

License

The AstroLib.jl package is licensed under the MIT “Expat” License [https://opensource.org/licenses/MIT]. The original author is Mosè Giordano.

Notes

This project is a work-in-progress, only few procedures have been
translated so far. In addition, function syntax may change from time to
time. Check
TODO.md [https://github.com/giordano/AstroLib.jl/blob/master/TODO.md]
out to see how you can help. Volunteers are welcome!

Documentation

Every function provided has detailed documentation that can be
accessed [http://docs.julialang.org/en/stable/manual/documentation/#accessing-documentation]
at Julia REPL with

julia> ?FunctionName

or with

julia> @doc FunctionName

The following is the list of all functions provided to the users. Click on them
to read their documentation.

Astronomical Utilities

	adstring

	airtovac

	aitoff

	altaz2hadec

	calz_unred

	ct2lst

	daycnv

	deredd

	eci2geo

	eqpole

	flux2mag

	gal_uvw

	geo2eci

	geo2geodetic

	geo2mag

	geodetic2geo

	get_date

	get_juldate

	gcirc

	hadec2altaz

	jdcnv

	juldate

	kepler_solver

	mag2flux

	mag2geo

	month_cnv

	paczynski

	planck_freq

	planck_wave

	polrec

	posang

	precess

	precess_xyz

	premat

	radec

	recpol

	rhotheta

	sixty

	sphdist

	ten

	vactoair

	xyz

	ydn2md

	ymd2dn

Miscellaneous (Non-Astronomy) Utilities

	cirrange

Related Projects

This is not the only effort to bundle astronomical functions written in Julia
language. Other packages useful for more specific purposes are available at
https://juliaastro.github.io/. A list of other packages is available here [https://github.com/svaksha/Julia.jl/blob/master/Astronomy.md].

Because of this, some of IDL AstroLib’s utilities are not provided in
AstroLib.jl as they are already present in other Julia packages. Here is a
list of such utilities:

	aper, see AperturePhotometry.jl [https://github.com/kbarbary/AperturePhotometry.jl] package

	cosmo_param, see Cosmology.jl [https://github.com/JuliaAstro/Cosmology.jl] package

	galage, see Cosmology.jl [https://github.com/JuliaAstro/Cosmology.jl]
package

	glactc_pm, see SkyCoords.jl [https://github.com/kbarbary/SkyCoords.jl]
package

	glactc, see SkyCoords.jl [https://github.com/kbarbary/SkyCoords.jl]
package

	lumdist, see Cosmology.jl [https://github.com/JuliaAstro/Cosmology.jl]
package

	readcol, use readdlm [http://docs.julialang.org/en/stable/stdlib/io-network/#Base.readdlm], part
of Julia Base.DataFmt module. This is not a complete replacement for
readcol but most of the time it does-the-right-thing even without using
any option (it automatically identifies string and numerical columns) and you
do not need to manually specify a variable for each column

In addition, there are similar projects for Python (Python AstroLib [http://www.hs.uni-hamburg.de/DE/Ins/Per/Czesla/PyA/PyA/pyaslDoc/pyasl.html])
and R (Astronomy Users Library [http://rpackages.ianhowson.com/cran/astrolibR/]).

Indices and tables

	Index

 Copyright 2016, Mose' Giordano.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	AstroLib.jl 0.0.5 documentation

adstring

	
adstring(ra::Real, dec::Real[, precision::Int=2, truncate::Bool=true]) string

	
adstring([ra, dec]) string

	
adstring(dec) string

	
adstring([ra][, dec]) ["string1", "string2", ...]

	

Purpose

Returns right ascension and declination as string(s) in sexagesimal
format.

Explanation

Takes right ascension and declination expressed in decimal format,
converts them to sexagesimal and return a formatted string. The
precision of right ascension and declination can be specified.

Arguments

Arguments of this function are:

	ra: right ascension in decimal degrees. It is converted to hours
before printing.

	dec: declination in decimal degrees.

The function can be called in different ways:

	Two numeric arguments: first is ra, the second is dec.

	A 2-tuple (ra, dec).

	One 2-element numeric array: [ra, dec]. A single string is
returned.

	One numeric argument: it is assumed only dec is provided.

	Two numeric arrays of the same length: ra and dec arrays. An
array of strings is returned.

	An array of 2-tuples (ra, dec).

Optional keywords affecting the output format are always available:

	precision (optional integer keyword): specifies the number of
digits of declination seconds. The number of digits for righ
ascension seconds is always assumed to be one more precision. If
the function is called with only dec as input, precision
default to 1, in any other case defaults to 0.

	truncate (optional boolean keyword): if true, then the last
displayed digit in the output is truncated in precision rather than
rounded. This option is useful if adstring is used to form an
official IAU name (see http://vizier.u-strasbg.fr/Dic/iau-spec.htx)
with coordinate specification.

Output

The function returns one string if the function was called with scalar
ra and dec (or only dec) or a 2-element array [ra, dec].
If instead it was feeded with arrays of ra and dec, an array of
strings will be returned. The format of strings can be specified with
precision and truncate keywords, see above.

Example

julia> adstring(30.4, -1.23, truncate=true)
" 02 01 35.9 -01 13 48"

julia> adstring([30.4, -15.63], [-1.23, 48.41], precision=1)
2-element Array{AbstractString,1}:
 " 02 01 36.00 -01 13 48.0"
 "-22 57 28.80 +48 24 36.0"

airtovac

	
airtovac(wave_air) wave_vacuum

	

Purpose

Converts air wavelengths to vacuum wavelengths.

Explanation

Wavelengths are corrected for the index of refraction of air under
standard conditions. Wavelength values below \(2000 Å\) will not be
altered. Uses relation of Ciddor (1996).

Arguments

	wave_air: can be either a scalar or an array of numbers.
Wavelengths are corrected for the index of refraction of air under
standard conditions. Wavelength values below \(2000 Å\) will
not be altered, take care within \([1 Å, 2000 Å]\).

Output

Vacuum wavelength in angstroms, same number of elements as wave_air.

Method

Uses relation of Ciddor (1996), Applied Optics 62, 958.

Example

If the air wavelength is w = 6056.125 (a Krypton line), then
airtovac(w) yields a vacuum wavelength of 6057.8019.

Notes

vactoair converts vacuum wavelengths to air wavelengths.

Code of this function is based on IDL Astronomy User’s Library.

aitoff

	
aitoff(l, b) x, y

	

Purpose

Convert longitude l and latitude b to (x, y) using an Aitoff
projection.

Explanation

This function can be used to create an all-sky map in Galactic
coordinates with an equal-area Aitoff projection. Output map coordinates
are zero longitude centered.

Arguments

	l: longitude, scalar or vector, in degrees.

	b: latitude, number of elements as l, in degrees.

Coordinates can be given also as a 2-tuple (l, b).

Output

2-tuple (x, y).

	x: x coordinate, same number of elements as l. x is
normalized to be in \([-180, 180]\).

	y: y coordinate, same number of elements as l. y is
normalized to be in \([-90, 90]\).

Example

Get \((x ,y)\) Aitoff coordinates of Sirius, whose Galactic
coordinates are \((227.23, -8.890)\).

julia> x, y = aitoff(227.23, -8.890)
(-137.92196683723276,-11.772527357473054)

Notes

See AIPS memo No. 46
(ftp://ftp.aoc.nrao.edu/pub/software/aips/TEXT/PUBL/AIPSMEMO46.PS), page
4, for details of the algorithm. This version of aitoff assumes the
projection is centered at b=0 degrees.

Code of this function is based on IDL Astronomy User’s Library.

altaz2hadec

	
altaz2hadec(alt, az, lat) ha, dec

	

Purpose

Convert Horizon (Alt-Az) coordinates to Hour Angle and Declination.

Explanation

Can deal with the NCP singularity. Intended mainly to be used by program
hor2eq.

Arguments

Input coordinates may be either a scalar or an array, of the same
dimension.

	alt: local apparent altitude, in degrees, scalar or array.

	az: the local apparent azimuth, in degrees, scalar or vector,
measured east of north!!! If you have measured azimuth
west-of-south (like the book Meeus does), convert it to east of north
via: az = (az + 180) % 360.

	lat: the local geodetic latitude, in degrees, scalar or array.

alt and az can be given as a 2-tuple (alt, az).

Output

2-tuple (ha, dec)

	ha: the local apparent hour angle, in degrees. The hour angle is
the time that right ascension of 0 hours crosses the local meridian.
It is unambiguously defined.

	dec: the local apparent declination, in degrees.

The output coordinates are always floating points and have the same type
(scalar or array) as the input coordinates.

Example

Arcturus is observed at an apparent altitude of 59d,05m,10s and an
azimuth (measured east of north) of 133d,18m,29s while at the latitude
of +43.07833 degrees. What are the local hour angle and declination of
this object?

julia> ha, dec = altaz2hadec(ten(59,05,10), ten(133,18,29), 43.07833)
(336.6828582472844,19.182450965120402)

The widely available XEPHEM code gets:

Hour Angle = 336.683
Declination = 19.1824

Notes

hadec2altaz converts Hour Angle and Declination to Horizon (Alt-Az)
coordinates.

Code of this function is based on IDL Astronomy User’s Library.

calz_unred

	
calz_unred(wave, flux, ebv[, r_v]) deredden_wave

	

Purpose

Deredden a galaxy spectrum using the Calzetti et al. (2000) recipe.

Explanation

Calzetti et al. (2000, ApJ 533, 682;
http://adsabs.harvard.edu/abs/2000ApJ...533..682C) developed a recipe
for dereddening the spectra of galaxies where massive stars dominate the
radiation output, valid between \(0.12\) to \(2.2\) microns.
(calz_unred extrapolates between \(0.12\) and \(0.0912\)
microns.)

Arguments

	wave: wavelength vector (Angstroms)

	flux: calibrated flux vector, same number of elements as
wave.

	ebv: color excess E(B-V), scalar. If a negative ebv is
supplied, then fluxes will be reddened rather than deredenned. Note
that the supplied color excess should be that derived for the stellar
continuum, EBV(stars), which is related to the reddening derived from
the gas, EBV(gas), via the Balmer decrement by EBV(stars) =
0.44*EBV(gas).

	r_v (optional): scalar ratio of total to selective extinction,
default is 4.05. Calzetti et al. (2000) estimate
\(r_v = 4.05 \pm 0.80\) from optical-IR observations of 4
starbursts.

Output

Unreddened flux vector, same units and number of elements as flux.
Flux values will be left unchanged outside valid domain (\(0.0912\)
- \(2.2\) microns).

Example

Estimate how a flat galaxy spectrum (in wavelength) between
\(1200 Å\) and \(3200 Å\) is altered by a reddening of E(B-V) =
0.1.

julia> wave = reshape(1200:50:3150,40);

julia> flux = ones(wave);

julia> calz_unred(wave, flux, -0.1);

Notes

Code of this function is based on IDL Astronomy User’s Library.

ct2lst

	
ct2lst(longitude, jd) local_sidereal_time

	
ct2lst(longitude, tz, date) local_sidereal_time

	

Purpose

Convert from Local Civil Time to Local Mean Sidereal Time.

Arguments

The function can be called in two different ways. The only argument
common to both methods is longitude:

	longitude: the longitude in degrees (east of Greenwich) of the
place for which the local sidereal time is desired, scalar. The
Greenwich mean sidereal time (GMST) can be found by setting longitude
= 0.

The civil date to be converted to mean sidereal time can be specified
either by providing the Julian days:

	jd: this is number of Julian days for the date to be converted.
It can be a scalar or an array.

or the time zone and the date:

	tz: the time zone of the site in hours, positive East of the
Greenwich meridian (ahead of GMT). Use this parameter to easily
account for Daylight Savings time (e.g. -4=EDT, -5 = EST/CDT),
scalar.

	date: this is the local civil time with type DateTime. It can
be a scalar or an array.

Output

The local sidereal time for the date/time specified in hours. This is a
scalar or an array of the same length as jd or date.

Method

The Julian days of the day and time is question is used to determine the
number of days to have passed since 2000-01-01. This is used in
conjunction with the GST of that date to extrapolate to the current GST;
this is then used to get the LST. See Astronomical Algorithms by Jean
Meeus, p. 84 (Eq. 11-4) for the constants used.

Example

Find the Greenwich mean sidereal time (GMST) on 2008-07-30 at 15:53 in
Baltimore, Maryland (longitude=-76.72 degrees). The timezone is EDT or
tz=-4

julia> ct2lst(-76.72, -4, DateTime(2008, 7, 30, 15, 53))
11.356505172312609

julia> sixty(ans)
3-element Array{Float64,1}:
 11.0 # Hours
 21.0 # Minutes
 23.4186 # Seconds

Find the Greenwich mean sidereal time (GMST) on 2015-11-24 at 13:21 in
Heidelberg, Germany (longitude=08° 43’ E). The timezone is CET or tz=1.
Provide ct2lst only with the longitude of the place and the number
of Julian days.

Convert longitude to decimals.
julia> longitude=ten(8, 43)
8.716666666666667

Get number of Julian days. Remember to subtract the time zone in
order to convert local time to UTC.
julia> jd = jdcnv(DateTime(2015, 11, 24, 13, 21) - Dates.Hour(1))
2.4573510145833334e6

Calculate Greenwich Mean Sidereal Time.
julia> ct2lst(longitude, jd)
17.140685171005316

julia> sixty(ans)
3-element Array{Float64,1}:
 17.0 # Hours
 8.0 # Minutes
 26.4666 # Seconds

Notes

Code of this function is based on IDL Astronomy User’s Library.

daycnv

	
daycnv(julian_days) DateTime

	

Purpose

Converts Julian days number to Gregorian calendar dates.

Explanation

Takes the number of Julian calendar days since epoch
-4713-11-24T12:00:00 and returns the corresponding proleptic
Gregorian Calendar date.

Argument

	julian_days: Julian days number, scalar or array.

Output

Proleptic Gregorian Calendar date, of type DateTime, corresponding
to the given Julian days number.

Example

julia> daycnv(2440000)
1968-05-23T12:00:00

Notes

jdcnv is the inverse of this function.

deredd

	
deredd(Eby, by, m1, c1, ub) by0, m0, c0, ub0

	

Purpose

Deredden stellar Stromgren parameters given for a value of E(b-y)

Arguments

	Eby: color index E(b-y), scalar (E(b-y) = 0.73*E(B-V))

	by: b-y color (observed)

	m1: Stromgren line blanketing parameter (observed)

	c1: Stromgren Balmer discontinuity parameter (observed)

	ub: u-b color (observed)

All arguments can be either scalars or arrays all of the same length.

Output

The 4-tuple (by0, m0, c0, ub0).

	by0: b-y color (dereddened)

	m0: line blanketing index (dereddened)

	c0: Balmer discontinuity parameter (dereddened)

	ub0: u-b color (dereddened)

These are scalars or arrays of the same length as the input arguments.

Example

julia> deredd(0.5, 0.2, 1.0, 1.0, 0.1)
(-0.3,1.165,0.905,-0.665)

Notes

Code of this function is based on IDL Astronomy User’s Library.

eci2geo

	
eci2geo(x, y, z, jd) latitude, longitude, altitude

	

Purpose

Convert Earth-centered inertial coordinates to geographic spherical
coordinates.

Explanation

Converts from ECI (Earth-Centered Inertial) (x, y, z) rectangular
coordinates to geographic spherical coordinates (latitude, longitude,
altitude). Julian day is also needed as input.

ECI coordinates are in km from Earth center at the supplied time (True
of Date). Geographic coordinates assume the Earth is a perfect sphere,
with radius equal to its equatorial radius.

Arguments

	x: ECI x coordinate at jd, in kilometers.

	y: ECI y coordinate at jd, in kilometers.

	z: ECI z coordinate at jd, in kilometers.

	jd: Julian days.

The three coordinates can be passed as a 3-tuple (x, y, z). In
addition, x, y, z, and jd can be given as arrays of the
same length.

Output

The 3-tuple of geographical coordinate (latitude, longitude, altitude).

	latitude: latitude, in degrees.

	longitude: longitude, in degrees.

	altitude: altitude, in kilometers.

If ECI coordinates are given as arrays, a 3-tuple of arrays of the same
length is returned.

Example

Obtain the geographic direction of the vernal point on
2015-06-30T14:03:12.857, in geographic coordinates, at altitude 600 km.
Note: equatorial radii of Solar System planets are stored into
AstroLib.PLANETSRADII dictionary.

julia> x = AstroLib.PLANETSRADII["earth"][1] + 600;

julia> lat, long, alt = eci2geo(x, 0, 0, jdcnv(DateTime("2015-06-30T14:03:12.857")))
(0.0,230.87301833205856,600.0)

These coordinates can be further transformed into geodetic coordinates
using geo2geodetic or into geomagnetic coordinates using
geo2mag.

Notes

geo2eci converts geographic spherical coordinates to Earth-centered
inertial coordinates.

Code of this function is based on IDL Astronomy User’s Library.

eqpole

	
eqpole(l, b) x, y

	

Purpose

Convert right ascension \(l\) and declination \(b\) to
coordinate \((x, y)\) using an equal-area polar projection.

Explanation

The output \(x\) and \(y\) coordinates are scaled to be in the
range \([-90, 90]\) and to go from equator to pole to equator.
Output map points can be centered on the north pole or south pole.

Arguments

	l: longitude, scalar or vector, in degrees

	b: latitude, same number of elements as right ascension, in
degrees

	southpole (optional boolean keyword): keyword to indicate that
the plot is to be centered on the south pole instead of the north
pole. Default is false.

Output

The 2-tuple \((x, y)\):

	\(x\) coordinate, same number of elements as right ascension,
normalized to be in the range \([-90, 90]\).

	\(y\) coordinate, same number of elements as declination,
normalized to be in the range \([-90, 90]\).

Example

julia> eqpole(100, 35, southpole=true)
(-111.18287262822456,-19.604540237028665)

julia> eqpole(80, 19)
(72.78853915267848,12.83458333897169)

Notes

Code of this function is based on IDL Astronomy User’s Library.

flux2mag

	
flux2mag(flux[, zero_point, ABwave=number]) magnitude

	

Purpose

Convert from flux expressed in erg/(s cm² Å) to magnitudes.

Explanation

This is the reverse of mag2flux.

Arguments

	flux: the flux to be converted in magnitude, expressed in erg/(s
cm² Å). It can be either a scalar or an array.

	zero_point: scalar giving the zero point level of the magnitude.
If not supplied then defaults to 21.1 (Code et al 1976). Ignored if
the ABwave keyword is supplied

	ABwave (optional numeric keyword): wavelength scalar or vector in
Angstroms. If supplied, then returns Oke AB magnitudes (Oke & Gunn
1983, ApJ, 266, 713;
http://adsabs.harvard.edu/abs/1983ApJ...266..713O).

Output

The magnitude. It is of the same type, scalar or array, as flux.

If the ABwave keyword is set then magnitude is given by the
expression

\[\text{ABmag} = -2.5\log_{10}(f) - 5\log_{10}(\text{ABwave}) - 2.406\]

Otherwise, magnitude is given by the expression

\[\text{mag} = -2.5\log_{10}(\text{flux}) - \text{zero point}\]

Example

julia> flux2mag(5.2e-15)
14.609991640913002

julia> flux2mag(5.2e-15, 15)
20.709991640913003

julia> flux2mag(5.2e-15, ABwave=15)
27.423535345634598

Notes

Code of this function is based on IDL Astronomy User’s Library.

gal_uvw

	
gal_uvw(ra, dec, pmra, pmdec, vrad, plx[, lsr=true]) u, v, w

	

Purpose

Calculate the Galactic space velocity \((u, v, w)\) of a star.

Explanation

Calculates the Galactic space velocity \((u, v, w)\) of a star given
its (1) coordinates, (2) proper motion, (3) parallax, and (4) radial
velocity.

Arguments

User must supply a position, proper motion, radial velocity and
parallax. Either scalars or arrays all of the same length can be
supplied.

	Position:

	ra: right ascension, in degrees

	dec: declination, in degrees

	Proper Motion

	pmra: proper motion in right ascension in arc units (typically
milli-arcseconds/yr). If given \(\mu_\alpha\) – proper motion in
seconds of time/year – then this is equal to
\(15 \mu_\alpha \cos(\text{dec})\).

	pmdec: proper motion in declination (typically mas/yr).

	Radial Velocity

	vrad: velocity in km/s

	Parallax

	plx: parallax with same distance units as proper motion
measurements typically milliarcseconds (mas)

If you know the distance in parsecs, then set plx to
\(1000/\text{distance}\), if proper motion measurements are given in
milli-arcseconds/yr.

There is an additional optional keyword:

	lsr (optional boolean keyword): if this keyword is set to
true, then the output velocities will be corrected for the solar
motion \((u, v, w)_\odot = (-8.5, 13.38, 6.49)\) (Coşkunoǧlu et
al. 2011 MNRAS, 412, 1237;
DOI:10.1111/j.1365-2966.2010.17983.x [http://dx.doi.org/10.1111/j.1365-2966.2010.17983.x])
to the local standard of rest (LSR). Note that the value of the solar
motion through the LSR remains poorly determined.

Output

The 3-tuple \((u, v, w)\)

	\(u\): velocity (km/s) positive toward the Galactic
anticenter

	\(v\): velocity (km/s) positive in the direction of Galactic
rotation

	\(w\): velocity (km/s) positive toward the North Galactic Pole

Method

Follows the general outline of Johnson & Soderblom (1987, AJ, 93, 864;
DOI:10.1086/114370 [http://dx.doi.org/10.1086/114370]) except that
\(u\) is positive outward toward the Galactic anticenter, and
the J2000 transformation matrix to Galactic coordinates is taken from
the introduction to the Hipparcos catalog.

Example

Compute the U,V,W coordinates for the halo star HD 6755. Use values from
Hipparcos catalog, and correct to the LSR.

julia> ra=ten(1,9,42.3)*15.; dec = ten(61,32,49.5);

julia> pmra = 627.89; pmdec = 77.84; # mas/yr

julia> vrad = -321.4; dis = 129; # distance in parsecs

julia> u, v, w = gal_uvw(ra, dec, pmra, pmdec, vrad, 1e3/dis, lsr=true)
(118.2110474553902,-466.4828898385057,88.16573278565097)

Notes

This function does not take distance as input. See “Arguments” section
above for how to provide it using parallax argument.

Code of this function is based on IDL Astronomy User’s Library.

geo2eci

	
geo2eci(latitude, longitude, altitude, jd) x, y, z

	

Purpose

Convert geographic spherical coordinates to Earth-centered inertial
coordinates.

Explanation

Converts from geographic spherical coordinates (latitude, longitude,
altitude) to ECI (Earth-Centered Inertial) (x, y, z) rectangular
coordinates. Julian days is also needed.

Geographic coordinates assume the Earth is a perfect sphere, with radius
equal to its equatorial radius. ECI coordinates are in km from Earth
center at epoch TOD (True of Date).

Arguments

	latitude: geographic latitude, in degrees.

	longitude: geographic longitude, in degrees.

	altitude: geographic altitude, in kilometers.

	jd: Julian days.

The three coordinates can be passed as a 3-tuple
(latitude, longitude, altitude). In addition, latitude,
longitude, altitude, and jd can be given as arrays of the
same length.

Output

The 3-tuple of ECI (x, y, z) coordinates, in kilometers. The TOD epoch
is the supplied jd time.

If geographical coordinates are given as arrays, a 3-tuple of arrays of
the same length is returned.

Example

Obtain the ECI coordinates of the intersection of the equator and
Greenwich’s meridian on 2015-06-30T14:03:12.857

julia> geo2eci(0, 0, 0, jdcnv(DateTime("2015-06-30T14:03:12.857")))
(-4024.8671780315185,4947.835465127513,0.0)

Notes

eci2geo converts Earth-centered inertial coordinates to geographic
spherical coordinates.

Code of this function is based on IDL Astronomy User’s Library.

geo2geodetic

	
geo2geodetic(latitude, longitude, altitude) latitude, longitude, altitude

	
geo2geodetic(latitude, longitude, altitude, planet) latitude, longitude, altitude

	
geo2geodetic(latitude, longitude, altitude, equatorial_radius, polar_radius) latitude, longitude, altitude

	

Purpose

Convert from geographic (or planetographic) to geodetic coordinates.

Explanation

Converts from geographic (latitude, longitude, altitude) to geodetic
(latitude, longitude, altitude). In geographic coordinates, the Earth is
assumed a perfect sphere with a radius equal to its equatorial radius.
The geodetic (or ellipsoidal) coordinate system takes into account the
Earth’s oblateness.

Geographic and geodetic longitudes are identical. Geodetic latitude is
the angle between local zenith and the equatorial plane. Geographic and
geodetic altitudes are both the closest distance between the satellite
and the ground.

Arguments

The function has two base methods. The arguments common to all methods
and always mandatory are latitude, longitude, and altitude:

	latitude: geographic latitude, in degrees.

	longitude: geographic longitude, in degrees.

	altitude: geographic altitude, in kilometers.

In order to convert to geodetic coordinates, you can either provide
custom equatorial and polar radii of the planet or use the values of one
of the planets of Solar System (Pluto included).

If you want to use the method with explicit equatorial and polar radii
the additional mandatory arguments are:

	equatorial_radius: value of the equatorial radius of the body, in
kilometers.

	polar_radius: value of the polar radius of the body, in
kilometers.

Instead, if you want to use the method with the selection of a planet,
the only additional argument is the planet name:

	planet (optional string argument): string with the name of the
Solar System planet, from “Mercury” to “Pluto”. If omitted (so, when
only latitude, longitude, and altitude are provided), the
default is “Earth”.

In all cases, the three coordinates can be passed as a 3-tuple
(latitude, longitude, altitude). In addition, geographical
latitude, longitude, and altitude can be given as arrays of
the same length.

Output

The 3-tuple (latitude, longitude, altitude) in geodetic coordinates,
for the body with specified equatorial and polar radii (Earth by
default).

If geographical coordinates are given as arrays, a 3-tuple of arrays of
the same length is returned.

Method

Stephen P. Keeler and Yves Nievergelt, “Computing geodetic coordinates”,
SIAM Rev. Vol. 40, No. 2, pp. 300-309, June 1998
(DOI:10.1137/S0036144597323921 [http://dx.doi.org/10.1137/S0036144597323921]).

Planetary constants from “Allen’s Astrophysical Quantities”, Fourth Ed.,
(2000).

Example

Locate the Earth geographic North pole (latitude: 90°, longitude: 0°,
altitude 0 km), in geodetic coordinates:

julia> geo2geodetic(90, 0, 0)
(90.0,0.0,21.38499999999931)

The same for Jupiter:

julia> geo2geodetic(90, 0, 0, "Jupiter")
(90.0,0.0,4355.443799999994)

Find geodetic coordinates for point of geographic coordinates (latitude,
longitude, altitude) = (43.16°, -24.32°, 3.87 km) on a planet with
equatorial radius 8724.32 km and polar radius 8619.19 km:

julia> geo2geodetic(43.16, -24.32, 3.87, 8724.32, 8619.19)
(43.849399515234516,-24.32,53.53354478670836)

Notes

Whereas the conversion from geodetic to geographic coordinates is given
by an exact, analytical formula, the conversion from geographic to
geodetic isn’t. Approximative iterations (as used here) exist, but tend
to become less good with increasing eccentricity and altitude. The
formula used in this routine should give correct results within six
digits for all spatial locations, for an ellipsoid (planet) with an
eccentricity similar to or less than Earth’s. More accurate results can
be obtained via calculus, needing a non-determined amount of iterations.

In any case, the function geodetic2geo, which converts from geodetic
(or planetodetic) to geographic coordinates, can be used to estimate the
accuracy of geo2geodetic.

julia> collect(geodetic2geo(geo2geodetic(67.2, 13.4, 1.2))) - [67.2, 13.4, 1.2]
3-element Array{Float64,1}:
 -3.56724e-9
 0.0
 9.47512e-10

Code of this function is based on IDL Astronomy User’s Library.

geo2mag

	
geo2mag(latitude, longitude[, year]) geomagnetic_latitude, geomagnetic_longitude

	

Purpose

Convert from geographic to geomagnetic coordinates.

Explanation

Converts from geographic (latitude, longitude) to geomagnetic (latitude,
longitude). Altitude is not involved in this function.

Arguments

	latitude: geographic latitude (North), in degrees.

	longitude: geographic longitude (East), in degrees.

	year (optional numerical argument): the year in which to perform
conversion. If omitted, defaults to current year.

The coordinates can be passed as arrays of the same length.

Output

The 2-tuple of magnetic (latitude, longitude) coordinates, in degrees.

If geographical coordinates are given as arrays, a 2-tuple of arrays of
the same length is returned.

Example

Kyoto has geographic coordinates 35° 00’ 42’’ N, 135° 46’ 06’’ E, find
its geomagnetic coordinates in 2016:

julia> geo2mag(ten(35,0,42), ten(135,46,6), 2016)
(36.86579228937769,-60.184060536651614)

Notes

This function uses list of North Magnetic Pole positions provided by
World Magnetic Model
(https://www.ngdc.noaa.gov/geomag/data/poles/NP.xy).

mag2geo converts geomagnetical coordinates to geographic
coordinates.

Code of this function is based on IDL Astronomy User’s Library.

geodetic2geo

	
geodetic2geo(latitude, longitude, altitude) latitude, longitude, altitude

	
geodetic2geo(latitude, longitude, altitude, planet) latitude, longitude, altitude

	
geodetic2geo(latitude, longitude, altitude, equatorial_radius, polar_radius) latitude, longitude, altitude

	

Purpose

Convert from geodetic (or planetodetic) to geographic coordinates.

Explanation

Converts from geodetic (latitude, longitude, altitude) to geographic
(latitude, longitude, altitude). In geographic coordinates, the Earth is
assumed a perfect sphere with a radius equal to its equatorial radius.
The geodetic (or ellipsoidal) coordinate system takes into account the
Earth’s oblateness.

Geographic and geodetic longitudes are identical. Geodetic latitude is
the angle between local zenith and the equatorial plane. Geographic and
geodetic altitudes are both the closest distance between the satellite
and the ground.

Arguments

The function has two base methods. The arguments common to all methods
and always mandatory are latitude, longitude, and altitude:

	latitude: geodetic latitude, in degrees.

	longitude: geodetic longitude, in degrees.

	altitude: geodetic altitude, in kilometers.

In order to convert to geographic coordinates, you can either provide
custom equatorial and polar radii of the planet or use the values of one
of the planets of Solar System (Pluto included).

If you want to use the method with explicit equatorial and polar radii
the additional mandatory arguments are:

	equatorial_radius: value of the equatorial radius of the body, in
kilometers.

	polar_radius: value of the polar radius of the body, in
kilometers.

Instead, if you want to use the method with the selection of a planet,
the only additional argument is the planet name:

	planet (optional string argument): string with the name of the
Solar System planet, from “Mercury” to “Pluto”. If omitted (so, when
only latitude, longitude, and altitude are provided), the
default is “Earth”.

In all cases, the three coordinates can be passed as a 3-tuple
(latitude, longitude, altitude). In addition, geodetic latitude,
longitude, and altitude can be given as arrays of the same
length.

Output

The 3-tuple (latitude, longitude, altitude) in geographic
coordinates, for the body with specified equatorial and polar radii
(Earth by default).

If geodetic coordinates are given as arrays, a 3-tuple of arrays of the
same length is returned.

Method

Stephen P. Keeler and Yves Nievergelt, “Computing geodetic coordinates”,
SIAM Rev. Vol. 40, No. 2, pp. 300-309, June 1998
(DOI:10.1137/S0036144597323921 [http://dx.doi.org/10.1137/S0036144597323921]).

Planetary constants from “Allen’s Astrophysical Quantities”, Fourth Ed.,
(2000).

Example

Find geographic coordinates of geodetic North pole (latitude: 90°,
longitude: 0°, altitude 0 km) of the Earth:

julia> geodetic2geo(90, 0, 0)
(90.0,0.0,-21.38499999999931)

The same for Jupiter:

julia> geodetic2geo(90, 0, 0, "Jupiter")
(90.0,0.0,-4355.443799999994)

Find geographic coordinates for point of geodetic coordinates (latitude,
longitude, altitude) = (43.16°, -24.32°, 3.87 km) on a planet with
equatorial radius 8724.32 km and polar radius 8619.19 km:

julia> geodetic2geo(43.16, -24.32, 3.87, 8724.32, 8619.19)
(42.46772711708433,-24.32,-44.52902080669082)

Notes

geo2geodetic converts from geographic (or planetographic) to
geodetic coordinates.

Code of this function is based on IDL Astronomy User’s Library.

get_date

	
get_date([date::DateTime]) string

	
get_date([date::DateTime;] old=true) string

	
get_date([date::DateTime;] timetag=true) string

	

Purpose

Returns the UTC date in "CCYY-MM-DD" format for FITS headers.

Explanation

This is the format required by the DATE and DATE-OBS keywords in
a FITS header.

Argument

	date (optional): the date in UTC standard, of DateTime type.
If omitted, defaults to the current UTC time.

	old (optional boolean keyword): see below.

	timetag (optional boolean keyword): see below.

Output

A string with the date formatted according to the given optional
keywords.

	When no optional keywords (timetag and old) are supplied, the
format of the output string is "CCYY-MM-DD" (year-month-day part
of the date), where represents a 4-digit calendar year, the 2-digit
ordinal number of a calendar month within the calendar year, and

the 2-digit ordinal number of a day within the calendar month.

 cirrange

 Navigation

 	
 index

 	
 previous |

 	AstroLib.jl 0.0.5 documentation

cirrange

	
cirrange(number[, max]) restricted_number

	

Purpose

Force a number into a given range \([0, \text{max})\).

Argument

	number: the number to modify. Can be a scalar or an array.

	max (optional numerical argument): specify the extremum of the
range \([0, \text{max})\) into which the number should be
restricted. If omitted, defaults to 360.0.

Output

The converted number or array of numbers, as AbstractFloat.

Example

Restrict an array of numbers in the range \([0, 2\pi)\) as if they
are angles expressed in radians:

julia> cirrange([4pi, 10, -5.23], 2.0*pi)
3-element Array{Float64,1}:
 0.0
 3.71681
 1.05319

Notes

This function does not support the radians keyword like IDL
implementation. Use 2.0*pi as second argument to restrict a number
to the same interval.

Code of this function is based on IDL Astronomy User’s Library.

 Copyright 2016, Mose' Giordano.
 Created using Sphinx 1.3.5.

 Index

 Navigation

 	
 index

 	AstroLib.jl 0.0.5 documentation

Index

 A
 | C
 | D
 | E
 | F
 | G
 | H
 | J
 | K
 | M
 | P
 | R
 | S
 | T
 | V
 | X
 | Y

A

 	

 	adstring() (built-in function)

 	airtovac() (built-in function)

 	

 	aitoff() (built-in function)

 	altaz2hadec() (built-in function)

C

 	

 	calz_unred() (built-in function)

 	cirrange() (built-in function)

 	

 	ct2lst() (built-in function)

D

 	

 	daycnv() (built-in function)

 	

 	deredd() (built-in function)

E

 	

 	eci2geo() (built-in function)

 	

 	eqpole() (built-in function)

F

 	

 	flux2mag() (built-in function)

G

 	

 	gal_uvw() (built-in function)

 	gcirc() (built-in function)

 	geo2eci() (built-in function)

 	geo2geodetic() (built-in function)

 	

 	geo2mag() (built-in function)

 	geodetic2geo() (built-in function)

 	get_date() (built-in function)

 	get_juldate() (built-in function)

H

 	

 	hadec2altaz() (built-in function)

J

 	

 	jdcnv() (built-in function)

 	

 	juldate() (built-in function)

K

 	

 	kepler_solver() (built-in function)

M

 	

 	mag2flux() (built-in function)

 	mag2geo() (built-in function)

 	

 	month_cnv() (built-in function)

P

 	

 	paczynski() (built-in function)

 	planck_freq() (built-in function)

 	planck_wave() (built-in function)

 	polrec() (built-in function)

 	

 	posang() (built-in function)

 	precess() (built-in function)

 	precess_xyz() (built-in function)

 	premat() (built-in function)

R

 	

 	radec() (built-in function)

 	recpol() (built-in function)

 	

 	rhotheta() (built-in function)

S

 	

 	sixty() (built-in function)

 	

 	sphdist() (built-in function)

T

 	

 	ten() (built-in function)

 	

 	tenv() (built-in function)

V

 	

 	vactoair() (built-in function)

X

 	

 	xyz() (built-in function)

Y

 	

 	ydn2md() (built-in function)

 	

 	ymd2dn() (built-in function)

 Copyright 2016, Mose' Giordano.
 Created using Sphinx 1.3.5.

search.html

 Navigation

 		
 index

 		AstroLib.jl 0.0.5 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

