
AstroLib.jl Documentation
Release 0.0.3

Mose’ Giordano

March 18, 2016

Contents

1 Install 3

2 Usage 5

3 Development 7

4 License 9

5 Notes 11

6 Documentation 13

7 Related Projects 33

i

ii

AstroLib.jl Documentation, Release 0.0.3

AstroLib.jl is a package of small generic routines useful above all in astronomical and astrophysical context, written
in Julia.

Included are also translations of some IDL Astronomy User’s Library procedures, which are released under terms of
BSD-2-Clause License. AstroLib.jl‘s functions are not drop-in replacement of those procedures, Julia standard
data types are often used (e.g., DateTime type instead of generic string for dates) and the syntax may slightly differ.

An extensive error testing suite ensures old fixed bugs will not be brought back by future changes.

Contents 1

https://github.com/giordano/AstroLib.jl
http://julialang.org/
http://idlastro.gsfc.nasa.gov/homepage.html
http://idlastro.gsfc.nasa.gov/idlfaq.html#A14

AstroLib.jl Documentation, Release 0.0.3

2 Contents

CHAPTER 1

Install

AstroLib.jl is available for Julia 0.4 and later versions, and can be installed with Julia built-in package manager.
In a Julia session run the command

julia> Pkg.add("AstroLib")

You may need to update your package list with Pkg.update() in order to get the latest version of AstroLib.jl.

3

http://docs.julialang.org/en/stable/manual/packages/

AstroLib.jl Documentation, Release 0.0.3

4 Chapter 1. Install

CHAPTER 2

Usage

After installing the package, you can start using AstroLib.jl with

using AstroLib

5

AstroLib.jl Documentation, Release 0.0.3

6 Chapter 2. Usage

CHAPTER 3

Development

AstroLib.jl is developed on GitHub at https://github.com/giordano/AstroLib.jl. You can contribute by providing
new functions, reporting bugs, and improving documentation.

7

https://github.com/giordano/AstroLib.jl

AstroLib.jl Documentation, Release 0.0.3

8 Chapter 3. Development

CHAPTER 4

License

The AstroLib.jl package is licensed under the MIT “Expat” License. The original author is Mosè Giordano.

9

https://opensource.org/licenses/MIT

AstroLib.jl Documentation, Release 0.0.3

10 Chapter 4. License

CHAPTER 5

Notes

This project is a work-in-progress, only few procedures have been translated so far. In addition, function syntax may
change from time to time. Check TODO.md out to see how you can help. Volunteers are welcome!

11

https://github.com/giordano/AstroLib.jl/blob/master/TODO.md

AstroLib.jl Documentation, Release 0.0.3

12 Chapter 5. Notes

CHAPTER 6

Documentation

Every function provided has detailed documentation that can be accessed at Julia REPL with

julia> ?FunctionName

or with

julia> @doc FunctionName

The following is the list of all functions provided to the users. Click on them to read their documentation.

6.1 Astronomical Utilities

6.1.1 adstring

adstring(ra::Real, dec::Real[, precision::Int=2, truncate::Bool=true])→ string
adstring([ra, dec])→ string
adstring(dec)→ string
adstring([ra][, dec])→ [”string1”, “string2”, ...]

Purpose

Returns right ascension and declination as string(s) in sexagesimal format.

Explanation

Takes right ascension and declination expressed in decimal format, converts them to sexagesimal and return a formatted
string. The precision of right ascension and declination can be specified.

Arguments

Arguments of this function are:

• ra: right ascension in decimal degrees. It is converted to hours before printing.

• dec: declination in decimal degrees.

The function can be called in different ways:

13

http://docs.julialang.org/en/stable/manual/documentation/#accessing-documentation

AstroLib.jl Documentation, Release 0.0.3

• Two numeric arguments: first is ra, the second is dec.

• A 2-tuple (ra, dec).

• One 2-element numeric array: [ra, dec]. A single string is returned.

• One numeric argument: it is assumed only dec is provided.

• Two numeric arrays of the same length: ra and dec arrays. An array of strings is returned.

• An array of 2-tuples (ra, dec).

Optional keywords affecting the output format are always available:

• precision (optional integer keyword): specifies the number of digits of declination seconds. The number of
digits for righ ascension seconds is always assumed to be one more precision. If the function is called with
only dec as input, precision default to 1, in any other case defaults to 0.

• truncate (optional boolean keyword): if true, then the last displayed digit in the output is truncated in pre-
cision rather than rounded. This option is useful if adstring is used to form an official IAU name (see
http://vizier.u-strasbg.fr/Dic/iau-spec.htx) with coordinate specification.

Output

The function returns one string if the function was called with scalar ra and dec (or only dec) or a 2-element array
[ra, dec]. If instead it was feeded with arrays of ra and dec, an array of strings will be returned. The format of
strings can be specified with precision and truncate keywords, see above.

Example

julia> adstring(30.4, -1.23, truncate=true)
" 02 01 35.9 -01 13 48"

julia> adstring([30.4, -15.63], [-1.23, 48.41], precision=1)
2-element Array{AbstractString,1}:
" 02 01 36.00 -01 13 48.0"
"-22 57 28.80 +48 24 36.0"

6.1.2 airtovac

airtovac(wave_air)→ wave_vacuum

Purpose

Converts air wavelengths to vacuum wavelengths.

Explanation

Wavelengths are corrected for the index of refraction of air under standard conditions. Wavelength values below 2000
Å will not be altered. Uses relation of Ciddor (1996).

14 Chapter 6. Documentation

http://vizier.u-strasbg.fr/Dic/iau-spec.htx

AstroLib.jl Documentation, Release 0.0.3

Arguments

• wave_air: can be either a scalar or an array of numbers. Wavelengths are corrected for the index of refraction
of air under standard conditions. Wavelength values below 2000 Å will not be altered, take care within [1 Å,
2000 Å].

Output

Vacuum wavelength in angstroms, same number of elements as wave_air.

Method

Uses relation of Ciddor (1996), Applied Optics 62, 958 (http://adsabs.harvard.edu/abs/1996ApOpt..35.1566C).

Example

If the air wavelength is w = 6056.125 (a Krypton line), then airtovac(w) yields an vacuum wavelength of
6057.8019.

Notes

Code of this function is based on IDL Astronomy User’s Library.

6.1.3 aitoff

aitoff(l, b)→ x, y

Purpose

Convert longitude l and latitude b to (x, y) using an Aitoff projection.

Explanation

This function can be used to create an all-sky map in Galactic coordinates with an equal-area Aitoff projection. Output
map coordinates are zero longitude centered.

Arguments

• l: longitude, scalar or vector, in degrees.

• b: latitude, number of elements as l, in degrees.

6.1. Astronomical Utilities 15

http://adsabs.harvard.edu/abs/1996ApOpt..35.1566C

AstroLib.jl Documentation, Release 0.0.3

Output

2-tuple (x, y).

• x: x coordinate, same number of elements as l. x is normalized to be in [-180, 180].

• y: y coordinate, same number of elements as l. y is normalized to be in [-90, 90].

Example

julia> x, y = aitoff(375, 2.437)
(16.63760711611838,2.712427279646118)

Notes

See AIPS memo No. 46 (ftp://ftp.aoc.nrao.edu/pub/software/aips/TEXT/PUBL/AIPSMEMO46.PS), page 4, for de-
tails of the algorithm. This version of aitoff assumes the projection is centered at b=0 degrees.

Code of this function is based on IDL Astronomy User’s Library.

6.1.4 altaz2hadec

altaz2hadec(alt, az, lat)→ ha, dec

Purpose

Convert Horizon (Alt-Az) coordinates to Hour Angle and Declination.

Explanation

Can deal with the NCP singularity. Intended mainly to be used by program hor2eq.

Arguments

Input coordinates may be either a scalar or an array, of the same dimension, the output coordinates are always floating
points and have the same type (scalar or array) as the input coordinates.

• alt: local apparent altitude, in degrees, scalar or array.

• az: the local apparent azimuth, in degrees, scalar or vector, measured east of north!!! If you have measured
azimuth west-of-south (like the book Meeus does), convert it to east of north via: az = (az + 180) %
360.

• lat: the local geodetic latitude, in degrees, scalar or array.

alt and az may be given as a signle 2-tuple (alt, az).

16 Chapter 6. Documentation

ftp://ftp.aoc.nrao.edu/pub/software/aips/TEXT/PUBL/AIPSMEMO46.PS

AstroLib.jl Documentation, Release 0.0.3

Output

2-tuple (ha, dec)

• ha: the local apparent hour angle, in degrees. The hour angle is the time that right ascension of 0 hours crosses
the local meridian. It is unambiguously defined.

• dec: the local apparent declination, in degrees.

Example

Arcturus is observed at an apparent altitude of 59d,05m,10s and an azimuth (measured east of north) of 133d,18m,29s
while at the latitude of +43.07833 degrees. What are the local hour angle and declination of this object?

julia> ha, dec = altaz2hadec(ten(59,05,10), ten(133,18,29), 43.07833)
(336.6828582472844,19.182450965120402)

The widely available XEPHEM code gets:

Hour Angle = 336.683
Declination = 19.1824

Notes

Code of this function is based on IDL Astronomy User’s Library.

6.1.5 calz_unred

calz_unred(wave, flux, ebv[, r_v])→ deredden_wave

Purpose

Deredden a galaxy spectrum using the Calzetti et al. (2000) recipe.

Explanation

Calzetti et al. (2000, ApJ 533, 682; http://adsabs.harvard.edu/abs/2000ApJ...533..682C) developed a recipe for dered-
dening the spectra of galaxies where massive stars dominate the radiation output, valid between 0.12 to 2.2 microns.
(calz_unred extrapolates between 0.12 and 0.0912 microns.)

Arguments

• wave: wavelength vector (Angstroms)

• flux: calibrated flux vector, same number of elements as wave.

• ebv: color excess E(B-V), scalar. If a negative ebv is supplied, then fluxes will be reddened rather than
deredenned. Note that the supplied color excess should be that derived for the stellar continuum, EBV(stars),
which is related to the reddening derived from the gas, EBV(gas), via the Balmer decrement by EBV(stars) =
0.44*EBV(gas).

6.1. Astronomical Utilities 17

http://adsabs.harvard.edu/abs/2000ApJ...533..682C

AstroLib.jl Documentation, Release 0.0.3

• r_v (optional): scalar ratio of total to selective extinction, default = 4.05. Calzetti et al. (2000) estimate r_v =
4.05 +/- 0.80 from optical-IR observations of 4 starbursts.

Output

Unreddened flux vector, same units and number of elements as flux. Flux values will be left unchanged outside valid
domain (0.0912 - 2.2 microns).

Example

Estimate how a flat galaxy spectrum (in wavelength) between 1200 Å and 3200 Å is altered by a reddening of E(B-V)
= 0.1.

julia> wave = reshape(1200:50:3150,40);

julia> flux = ones(wave);

julia> AstroLib.calz_unred(wave, flux, -0.1);

Notes

Code of this function is based on IDL Astronomy User’s Library.

6.1.6 daycnv

daycnv(julian_days)→ DateTime

Purpose

Converts Julian days number to Gregorian calendar dates.

Explanation

Takes the number of Julian calendar days since epoch -4713-11-24T12:00:00 and returns the corresponding
proleptic Gregorian Calendar date.

Argument

• julian_days: Julian days number, scalar or array.

Output

Proleptic Gregorian Calendar date, of type DateTime, corresponding to the given Julian days number.

18 Chapter 6. Documentation

AstroLib.jl Documentation, Release 0.0.3

Example

julia> daycnv(2440000)
1968-05-23T12:00:00

Notes

jdcnv is the inverse of this function.

6.1.7 flux2mag

flux2mag(flux[, zero_point, ABwave=number])→ magnitude

Purpose

Convert from flux expressed in erg/(s cm² Å) to magnitudes.

Explanation

This is the reverse of mag2flux.

Arguments

• flux: the flux to be converted in magnitude, expressed in erg/(s cm² Å). It can be either a scalar or an array.

• zero_point: scalar giving the zero point level of the magnitude. If not supplied then defaults to 21.1 (Code
et al 1976). Ignored if the ABwave keyword is supplied

• ABwave (optional numeric keyword): wavelength scalar or vector in Angstroms. If supplied, then returns Oke
AB magnitudes (Oke & Gunn 1983, ApJ, 266, 713; http://adsabs.harvard.edu/abs/1983ApJ...266..713O).

Output

The magnitude. It is of the same type, scalar or array, as flux.

If the ABwave keyword is set then magnitude is given by the expression

ABmag = -2.5*log10(f) - 5*log10(ABwave) - 2.406

Otherwise, magnitude is given by the expression

mag = -2.5*log10(flux) - zero_point

Notes

Code of this function is based on IDL Astronomy User’s Library.

6.1. Astronomical Utilities 19

http://adsabs.harvard.edu/abs/1983ApJ...266..713O

AstroLib.jl Documentation, Release 0.0.3

6.1.8 get_date

get_date([date::DateTime])→ string
get_date([date::DateTime;] old=true)→ string
get_date([date::DateTime;] timetag=true)→ string

Purpose

Returns the UTC date in "CCYY-MM-DD" format for FITS headers.

Explanation

This is the format required by the DATE and DATE-OBS keywords in a FITS header.

Argument

• date (optional): the date in UTC standard, of DateTime type. If omitted, defaults to the current UTC time.

• old (optional boolean keyword): see below.

• timetag (optional boolean keyword): see below.

Output

A string with the date formatted according to the given optional keywords.

• When no optional keywords (timetag and old) are supplied, the format of the output string is
"CCYY-MM-DD" (year-month-day part of the date), where represents a 4-digit calendar year, the 2-digit or-
dinal number of a calendar month within the calendar year, and

the 2-digit ordinal number of a day within the calendar month.

• If the boolean keyword old is true (default: false), the year-month-day part of date has "DD/MM/YY" format.
This is the formerly (pre-1997) recommended for FITS. Note that this format is now deprecated because it uses
only a 2-digit representation of the year.

• If the boolean keyword timetag is true (default: false), "Thh:mm:ss" is appended to the year-month-day
part of the date, where represents the hour in the day, the minutes, the seconds, and the literal ‘T’ the ISO 8601
time designator.

Note that old and timetag keywords can be used together, so that the output string will have
"DD/MM/YYThh:mm:ss" format.

Example

julia> get_date(timetag=true)
"2016-03-14:T11:26:23"

20 Chapter 6. Documentation

AstroLib.jl Documentation, Release 0.0.3

Notes

1. A discussion of the DATExxx syntax in FITS headers can be found in
http://www.cv.nrao.edu/fits/documents/standards/year2000.txt

2. Those who wish to use need further flexibility in their date formats (e.g. to use TAI time) should look at Bill
Thompson’s time routines in http://sohowww.nascom.nasa.gov/solarsoft/gen/idl/time

6.1.9 get_juldate

get_juldate()→ julian_days

Purpose

Return the number of Julian days for current time.

Explanation

Return for current time the number of Julian calendar days since epoch -4713-11-24T12:00:00 as a floating
point.

Example

julia> get_juldate()
2.4574620222685183e6

julia> daycnv(get_juldate())
2016-03-14T12:32:13

Notes

Use jdcnv to get the number of Julian days for a different date.

6.1.10 gcirc

gcirc(units, ra1, dec1, ra2, dec2)→ angular_distance

Purpose

Computes rigorous great circle arc distances.

Explanation

Input position can be either radians, sexagesimal right ascension and declination, or degrees.

6.1. Astronomical Utilities 21

http://www.cv.nrao.edu/fits/documents/standards/year2000.txt
http://sohowww.nascom.nasa.gov/solarsoft/gen/idl/time

AstroLib.jl Documentation, Release 0.0.3

Arguments

• units: integer, can be either 0, or 1, or 2. Describes units of inputs and output:

– 0: everything (input right ascensions and declinations, and output distance) is radians

– 1: right ascensions are in decimal hours, declinations in decimal degrees, output distance in arc seconds

– 2: right ascensions and declinations are in degrees, output distance in arc seconds

• ra1: right ascension or longitude of point 1

• dec1: declination or latitude of point 1

• ra2: right ascension or longitude of point 2

• dec2: declination or latitude of point 2

Both ra1 and dec1, and ra2 and dec2 can be given as 2-tuples (ra1, dec1) and (ra2, dec2).

Output

Angular distance on the sky between points 1 and 2, as a AbstractFloat. See units argument above for the
units.

Method

“Haversine formula” see http://en.wikipedia.org/wiki/Great-circle_distance.

Notes

• If ra1, dec1 are scalars, and ra2, dec2 are vectors, then the output is a vector giving the distance of each
element of ra2, dec2 to ra1, dec1. Similarly, if ra1,de1 are vectors, and ra2,dec2 are scalars, then the
output is a vector giving the distance of each element of ra1, dec1 to ra2, dec2. If both ra1, dec1 and
ra2, dec2 are vectors then the output is a vector giving the distance of each element of ra1, dec1 to the
corresponding element of ra2, dec2.

• The function sphdist provides an alternate method of computing a spherical distance.

• The Haversine formula can give rounding errors for antipodal points.

Code of this function is based on IDL Astronomy User’s Library.

6.1.11 jdcnv

jdcnv(date::DateTime)→ julian_days

Purpose

Convert proleptic Gregorian Calendar date in UTC standard to number of Julian days.

22 Chapter 6. Documentation

http://en.wikipedia.org/wiki/Great-circle_distance

AstroLib.jl Documentation, Release 0.0.3

Explanation

Takes the given proleptic Gregorian date in UTC standard and returns the number of Julian calendar days since epoch
-4713-11-24T12:00:00.

Argument

• date: date of DateTime type, in proleptic Gregorian Calendar.

Output

Number of Julian days, as a floating point.

Example

Find the Julian days number at 2009 August 23, 03:39:06.

julia> jdcnv(DateTime(2009, 08, 23, 03, 39, 06))
2.4550666521527776e6

Notes

This is the inverse of daycnv.

get_juldate returns the number of Julian days for current time. It is equivalent to jdcnv(Dates.now()).

For the conversion of Julian date to number of Julian days, use juldate.

6.1.12 juldate

juldate(date::DateTime)→ reduced_julia_days

Purpose

Convert from calendar to Reduced Julian Days.

Explanation

Julian Day Number is a count of days elapsed since Greenwich mean noon on 1 January 4713 B.C. Julian Days are
the number of Julian days followed by the fraction of the day elapsed since the preceding noon.

This function takes the given date and returns the number of Julian calendar days since epoch
1858-11-16T12:00:00 (Reduced Julian Days = Julian Days - 2400000).

Argument

• date: date of DateTime type, in Julian Calendar.

6.1. Astronomical Utilities 23

AstroLib.jl Documentation, Release 0.0.3

Notes

Julian Calendar is assumed, thus before 1582-10-15T00:00:00 this function is not the inverse of daycnv. For
the conversion proleptic Gregorian date to number of Julian days, use jdcnv, which is the inverse of daycnv.

Code of this function is based on IDL Astronomy User’s Library.

6.1.13 mag2flux

mag2flux(mag[, zero_point, ABwave=number])→ flux

Purpose

Convert from magnitudes to flux expressed in erg/(s cm² Å).

Explanation

This is the reverse of flux2mag.

Arguments

• mag: the magnitude to be converted in flux. It can be either a scalar or an array.

• zero_point: scalar giving the zero point level of the magnitude. If not supplied then defaults to 21.1 (Code
et al 1976). Ignored if the ABwave keyword is supplied

• ABwave (optional numeric keyword): wavelength, scalar or array, in Angstroms. If supplied, then
the input mag is assumed to contain Oke AB magnitudes (Oke & Gunn 1983, ApJ, 266, 713;
http://adsabs.harvard.edu/abs/1983ApJ...266..713O).

Output

The flux. It is of the same type, scalar or array, as mag.

If the ABwave keyword is set, then the flux is given by the expression

flux = 10^(-0.4*(mag +2.406 + 4*log10(ABwave)))

Otherwise the flux is given by

f = 10^(-0.4*(mag + zero_point))

Notes

Code of this function is based on IDL Astronomy User’s Library.

24 Chapter 6. Documentation

http://adsabs.harvard.edu/abs/1983ApJ...266..713O

AstroLib.jl Documentation, Release 0.0.3

6.1.14 polrec

polrec(radius, angle[, degrees=true])→ x, y

Purpose

Convert 2D polar coordinates to rectangular coordinates.

Explanation

This is the partial inverse function of recpol.

Arguments

• radius: radial coordinate of the point. It may be a scalar or an array.

• angle: the angular coordinate of the point. It may be a scalar or an array of the same lenth as radius.

• degrees (optional boolean keyword): if true, the angle is assumed to be in degrees, otherwise in radians.
It defaults to false.

Mandatory arguments can also be passed as the 2-tuple (radius, angle), so that it is possible to execute
recpol(polrec(radius, angle)).

Output

A 2-tuple (x, y) with the rectangular coordinate of the input. If radius and angle are arrays, x and y are arrays
of the same length as radius and angle.

6.1.15 precess

precess(ra, dec, equinox1, equinox2[, FK4=true, radian=true])→ prec_ra, prec_dec

Purpose

Precess coordinates from equinox1 to equinox2.

Explanation

The default (ra, dec) system is FK5 based on epoch J2000.0 but FK4 based on B1950.0 is available via the FK4
boolean keyword.

6.1. Astronomical Utilities 25

AstroLib.jl Documentation, Release 0.0.3

Arguments

• ra: input right ascension, scalar or vector, in degrees, unless the radians keyword is set to true

• dec: input declination, scalar or vector, in degrees, unless the radians keyword is set to true

• equinox1: original equinox of coordinates, numeric scalar.

• equinox2: equinox of precessed coordinates.

• FK4 (optional boolean keyword): if this keyword is set to true, the FK4 (B1950.0) system precession angles
are used to compute the precession matrix. When it is false, the default, use FK5 (J2000.0) precession angles.

• radians (optional boolean keyword): if this keyword is set to true, then the input and output right ascension
and declination vectors are in radians rather than degrees.

Output

The 2-tuple (ra, dec) of coordinates modified by precession.

Example

The Pole Star has J2000.0 coordinates (2h, 31m, 46.3s, 89d 15’ 50.6”); compute its coordinates at J1985.0

julia> ra, dec = ten(2,31,46.3)*15, ten(89,15,50.6)
(37.94291666666666,89.26405555555556)

julia> adstring(precess(ra, dec, 2000, 1985), precision=1)
" 02 16 22.73 +89 11 47.3"

Precess the B1950 coordinates of Eps Ind (RA = 21h 59m,33.053s, DEC = (-56d, 59’, 33.053”) to equinox B1975.

julia> ra, dec = ten(21, 59, 33.053)*15, ten(-56, 59, 33.053)
(329.88772083333333,-56.992514722222225)

julia> adstring(precess(ra, dec, 1950, 1975, FK4=true), precision=1)
" 22 01 15.46 -56 52 18.7"

Method

Algorithm from “Computational Spherical Astronomy” by Taff (1983), p. 24. (FK4). FK5 con-
stants from “Explanatory Supplement To The Astronomical Almanac” 1992, page 104 Table 3.211.1
(https://archive.org/details/131123ExplanatorySupplementAstronomicalAlmanac).

Notes

Accuracy of precession decreases for declination values near 90 degrees. precess should not be used more than 2.5
centuries from 2000 on the FK5 system (1950.0 on the FK4 system).

Code of this function is based on IDL Astronomy User’s Library.

26 Chapter 6. Documentation

https://archive.org/details/131123ExplanatorySupplementAstronomicalAlmanac

AstroLib.jl Documentation, Release 0.0.3

6.1.16 premat

premat(equinox1, equinox2[, FK4=true])→ precession_matrix

Purpose

Return the precession matrix needed to go from equinox1 to equinox2.

Explanation

This matrix is used by precess and baryvel to precess astronomical coordinates.

Arguments

• equinox1: original equinox of coordinates, numeric scalar.

• equinox2: equinox of precessed coordinates.

• FK4 (optional boolean keyword): if this keyword is set to true, the FK4 (B1950.0) system precession angles
are used to compute the precession matrix. When it is false, the default, use FK5 (J2000.0) precession angles.

Output

A 3×3 AbstractFloat matrix, used to precess equatorial rectangular coordinates.

Example

Return the precession matrix from 1950.0 to 1975.0 in the FK4 system

julia> premat(1950,1975,FK4=true)
3x3 Array{Float64,2}:

0.999981 0.00558913 0.00242967
-0.00558913 0.999984 -6.78963e-6
-0.00242967 -6.79021e-6 0.999997

Method

FK4 constants from “Computational Spherical Astronomy” by Taff (1983), p. 24. (FK4). FK5
constants from “Explanatory Supplement To The Astronomical Almanac” 1992, page 104 Table 3.211.1
(https://archive.org/details/131123ExplanatorySupplementAstronomicalAlmanac).

Notes

Code of this function is based on IDL Astronomy User’s Library.

6.1. Astronomical Utilities 27

https://archive.org/details/131123ExplanatorySupplementAstronomicalAlmanac

AstroLib.jl Documentation, Release 0.0.3

6.1.17 radec

radec(ra::Number, dec::Number[, hours=true]) → ra_hours, ra_minutes, ra_seconds, dec_degrees,
dec_minutes, dec_seconds

Purpose

Convert right ascension and declination from decimal to sexagesimal units.

Explanation

The conversion is to sexagesimal hours for right ascension, and sexagesimal degrees for declination.

Arguments

• ra: decimal right ascension, scalar or array. It is expressed in degrees, unless the optional keyword hours is
set to true.

• dec: declination in decimal degrees, scalar or array, same number of elements as ra.

• hours (optional boolean keyword): if false (the default), ra is assumed to be given in degrees, otherwise
ra is assumed to be expressed in hours.

Output

A 6-tuple of AbstractFloat:

(ra_hours, ra_minutes, ra_seconds, dec_degrees, dec_minutes, dec_seconds)

If ra and dec are arrays, also each element of the output 6-tuple are arrays of the same dimension.

Example

Position of Sirius in the sky is (ra, dec) = (6.7525, -16.7161), with right ascension expressed in hours. Its sexagesimal
representation is given by

julia> radec(6.7525, -16.7161, hours=true)
(6.0,45.0,9.0,-16.0,42.0,57.9600000000064)

6.1.18 recpol

recpol(x, y[, degrees=true])→ radius, angle

Purpose

Convert 2D rectangular coordinates to polar coordinates.

28 Chapter 6. Documentation

AstroLib.jl Documentation, Release 0.0.3

Explanation

This is the partial inverse function of polrec.

Arguments

• x: the abscissa coordinate of the point. It may be a scalar or an array.

• y: the ordinate coordinate of the point. It may be a scalar or an array of the same lenth as x.

• degrees (optional boolean keyword): if true, the output angle is given in degrees, otherwise in radians. It
defaults to false.

Mandatory arguments may also be passed as the 2-tuple (x, y), so that it is possible to execute
polrec(recpol(x, y)).

Output

A 2-tuple (radius, angle) with the polar coordinates of the input. The coordinate angle coordinate lies in the
range [-pi, pi] if degrees=false, or [-180, 180] when degrees=true.

If x and y are arrays, radius and angle are arrays of the same length as radius and angle.

6.1.19 sixty

sixty(number)→ [deg, min, sec]

Purpose

Converts a decimal number to sexagesimal.

Explanation

The reverse of ten function.

Argument

• number: decimal number to be converted to sexagesimal.

Output

An array of three AbstractFloat, that are the sexagesimal counterpart (degrees, minutes, seconds) of number.

Notes

Code of this function is based on IDL Astronomy User’s Library.

6.1. Astronomical Utilities 29

AstroLib.jl Documentation, Release 0.0.3

6.1.20 sphdist

sphdist(long1, lat1, long2, lat2[, degrees=true])→ angular_distance

Purpose

Angular distance between points on a sphere.

Arguments

• long1: longitude of point 1

• lat1: latitude of point 1

• long2: longitude of point 2

• lat2: latitude of point 2

• degrees (optional boolean keyword): if true, all angles, including the output distance, are assumed to be in
degrees, otherwise they are all in radians. It defaults to false.

Output

Angular distance on a sphere between points 1 and 2, as an AbstractFloat. It is expressed in radians unless
degrees keyword is set to true.

Notes

• gcirc function is similar to sphdist, but may be more suitable for astronomical applications.

• If long1, lat1 are scalars, and long2, lat2 are vectors, then the output is a vector giving the distance
of each element of long2, lat2 to long1, lat1. Similarly, if long1,de1 are vectors, and long2,lat2
are scalars, then the output is a vector giving the distance of each element of long1, lat1 to long2, lat2.
If both long1, lat1 and long2, lat2 are vectors then the output is a vector giving the distance of each
element of long1, lat1 to the corresponding element of long2, lat2.

Code of this function is based on IDL Astronomy User’s Library.

6.1.21 ten

ten(deg[, min, sec])→ decimal
ten(“deg:min:sec”)→ decimal
tenv([deg][, min][, sec])→ decimal
tenv([“deg:min:sec”])→ decimal

Purpose

Converts a sexagesimal number or string to decimal.

30 Chapter 6. Documentation

AstroLib.jl Documentation, Release 0.0.3

Explanation

ten is the inverse of the sixty function. tenv is the vectorial version of ten.

Arguments

ten takes as argument either three scalars (deg, min, sec) or a string. The string should have the form
"deg:min:sec" or "deg min sec". Also a one dimensional array [deg, min, sec] is accepted as ar-
gument.

If minutes and seconds are not specified they default to zero.

tenv takes as input three numerical arrays of numbers (minutes and seconds arrays default to null arrays if omitted)
or one array of strings.

Output

The decimal conversion of the sexagesimal numbers provided is returned. The output has the same dimension as the
input.

Method

The formula used for the conversion is

sign(deg)·(|deg| + min/60 + sec/3600)

Notes

These functions cannot deal with -0 (negative integer zero) in numeric input. If it is important to give sense to negative
zero, you can either make sure to pass a floating point negative zero -0.0 (this is the best option), or use negative
minutes and seconds, or non-integer negative degrees and minutes.

6.2 Miscellaneous (Non-Astronomy) Utilities

6.2.1 cirrange

cirrange(number[, max=2.0*pi])→ restricted_number

Purpose

Force a number into a given range [0, max).

Argument

• number: the number to modify. Can be a scalar or an array.

• max (optional numerical keyword): specify the extremum of the range [0, max) into which the number
should be restricted. If omitted, defaults to 360.0.

6.2. Miscellaneous (Non-Astronomy) Utilities 31

AstroLib.jl Documentation, Release 0.0.3

Output

The converted number or array of numbers, as AbstractFloat.

Example

Restrict an array of numbers in the range [0, 2pi) as if they are angles expressed in radians:

julia> cirrange([4pi, 10, -5.23], max=2.0*pi)
3-element Array{Float64,1}:
0.0
3.71681
1.05319

Notes

This function does not support the radians keyword like IDL implementation. Use max=2.0*pi to restrict a
number to the same interval.

Code of this function is based on IDL Astronomy User’s Library.

32 Chapter 6. Documentation

CHAPTER 7

Related Projects

This is not the only effort to bundle astronomical functions written in Julia language. Other packages useful
for more specific purposes are available at https://juliaastro.github.io/. A list of other packages is available at
https://github.com/svaksha/Julia.jl/blob/master/Astronomy.md.

Because of this, some of IDL AstroLib’s utilities are not provided in AstroLib.jl because already present in other
Julia packages. Here is a list of such utilities:

• aper, see https://github.com/kbarbary/AperturePhotometry.jl

• cosmo_param, see Cosmology package (https://github.com/JuliaAstro/Cosmology.jl)

• glactc_pm, see SkyCoords package (https://github.com/kbarbary/SkyCoords.jl)

• glactc, see SkyCoords package (https://github.com/kbarbary/SkyCoords.jl)

In addition, there are similar projects for Python (Python AstroLib) and R (Astronomy Users Library).

33

https://juliaastro.github.io/
https://github.com/svaksha/Julia.jl/blob/master/Astronomy.md
https://github.com/kbarbary/AperturePhotometry.jl
https://github.com/JuliaAstro/Cosmology.jl
https://github.com/kbarbary/SkyCoords.jl
https://github.com/kbarbary/SkyCoords.jl
http://www.hs.uni-hamburg.de/DE/Ins/Per/Czesla/PyA/PyA/pyaslDoc/pyasl.html
http://rpackages.ianhowson.com/cran/astrolibR/

AstroLib.jl Documentation, Release 0.0.3

34 Chapter 7. Related Projects

Index

A
adstring() (built-in function), 13
airtovac() (built-in function), 14
aitoff() (built-in function), 15
altaz2hadec() (built-in function), 16

C
calz_unred() (built-in function), 17
cirrange() (built-in function), 31

D
daycnv() (built-in function), 18

F
flux2mag() (built-in function), 19

G
gcirc() (built-in function), 21
get_date() (built-in function), 20
get_juldate() (built-in function), 21

J
jdcnv() (built-in function), 22
juldate() (built-in function), 23

M
mag2flux() (built-in function), 24

P
polrec() (built-in function), 25
precess() (built-in function), 25
premat() (built-in function), 27

R
radec() (built-in function), 28
recpol() (built-in function), 28

S
sixty() (built-in function), 29

sphdist() (built-in function), 30

T
ten() (built-in function), 30
tenv() (built-in function), 30

35

	Install
	Usage
	Development
	License
	Notes
	Documentation
	Related Projects

